$$BAF = 1 + \frac{|\overline{d}|}{\overline{CEM}}$$
 (Eq. A-12)

Where:

 $\label{eq:BAF=Bias} \text{BAF=Bias adjustment factor, calculated to} \\ \text{the nearest thousandth.}$

d=Arithmetic mean of the difference obtained during the failed bias test using Equation A-7.

CEM=Mean of the data values provided by the monitor during the failed bias test.

If the bias test is failed by a flow monitor at the operating level closest to normal on a 3-level relative accuracy test audit, calculate the bias adjustment factor for each of the three operating levels. Apply the largest of the three bias adjustment factors to sub-

sequent flow monitor data using Equation A-

Apply this adjustment prospectively to all monitor or monitoring system data from the date and time of the failed bias test until the date and time of a relative accuracy test audit that does not show bias. Use the adjusted values in computing substitution values in the missing data procedure, as specified in subpart D of this part, and in reporting the concentration of SO_2 , the flow rate, and the average NO_X emission rate and calculated mass emissions of SO_2 and CO_2 during the quarter and calendar year, as specified in subpart G of this part.

Figures for Appendix A of Part 75 FIGURE 1.—LINEARITY ERROR DETERMINATION

Day	Date and time	Reference value	Monitor value	Difference	Percent of reference value
Low-level:					
Mid-level:					
Mid-levei:					
High-level:					